Serveur d'exploration sur la COVID en France

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural insight into the role of novel SARS-CoV-2 E protein: A potential target for vaccine development and other therapeutic strategies.

Identifieur interne : 000562 ( Main/Exploration ); précédent : 000561; suivant : 000563

Structural insight into the role of novel SARS-CoV-2 E protein: A potential target for vaccine development and other therapeutic strategies.

Auteurs : Manish Sarkar [Inde] ; Soham Saha [France]

Source :

RBID : pubmed:32785274

Descripteurs français

English descriptors

Abstract

The outbreak of COVID-19 across the world has posed unprecedented and global challenges on multiple fronts. Most of the vaccine and drug development has focused on the spike proteins and viral RNA-polymerases and main protease for viral replication. Using the bioinformatics and structural modelling approach, we modelled the structure of the envelope (E)-protein of novel SARS-CoV-2. The E-protein of this virus shares sequence similarity with that of SARS- CoV-1, and is highly conserved in the N-terminus regions. Incidentally, compared to spike proteins, E proteins demonstrate lower disparity and mutability among the isolated sequences. Using homology modelling, we found that the most favorable structure could function as a gated ion channel conducting H+ ions. Combining pocket estimation and docking with water, we determined that GLU 8 and ASN 15 in the N-terminal region were in close proximity to form H-bonds which was further validated by insertion of the E protein in an ERGIC-mimic membrane. Additionally, two distinct "core" structures were visible, the hydrophobic core and the central core, which may regulate the opening/closing of the channel. We propose this as a mechanism of viral ion channeling activity which plays a critical role in viral infection and pathogenesis. In addition, it provides a structural basis and additional avenues for vaccine development and generating therapeutic interventions against the virus.

DOI: 10.1371/journal.pone.0237300
PubMed: 32785274
PubMed Central: PMC7423102


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural insight into the role of novel SARS-CoV-2 E protein: A potential target for vaccine development and other therapeutic strategies.</title>
<author>
<name sortKey="Sarkar, Manish" sort="Sarkar, Manish" uniqKey="Sarkar M" first="Manish" last="Sarkar">Manish Sarkar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Bose Institute, Kolkata, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biochemistry, Bose Institute, Kolkata</wicri:regionArea>
<wicri:noRegion>Kolkata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Saha, Soham" sort="Saha, Soham" uniqKey="Saha S" first="Soham" last="Saha">Soham Saha</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratory for Perception and Memory, Institut Pasteur, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratory for Perception and Memory, Institut Pasteur, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR-3571), Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR-3571), Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32785274</idno>
<idno type="pmid">32785274</idno>
<idno type="doi">10.1371/journal.pone.0237300</idno>
<idno type="pmc">PMC7423102</idno>
<idno type="wicri:Area/Main/Corpus">000632</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000632</idno>
<idno type="wicri:Area/Main/Curation">000632</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000632</idno>
<idno type="wicri:Area/Main/Exploration">000632</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural insight into the role of novel SARS-CoV-2 E protein: A potential target for vaccine development and other therapeutic strategies.</title>
<author>
<name sortKey="Sarkar, Manish" sort="Sarkar, Manish" uniqKey="Sarkar M" first="Manish" last="Sarkar">Manish Sarkar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Bose Institute, Kolkata, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biochemistry, Bose Institute, Kolkata</wicri:regionArea>
<wicri:noRegion>Kolkata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Saha, Soham" sort="Saha, Soham" uniqKey="Saha S" first="Soham" last="Saha">Soham Saha</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratory for Perception and Memory, Institut Pasteur, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratory for Perception and Memory, Institut Pasteur, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR-3571), Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR-3571), Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Betacoronavirus (chemistry)</term>
<term>Betacoronavirus (isolation & purification)</term>
<term>Computer Simulation (MeSH)</term>
<term>Coronavirus Infections (prevention & control)</term>
<term>Coronavirus Infections (virology)</term>
<term>Humans (MeSH)</term>
<term>Hydrogen (MeSH)</term>
<term>Hydrogen Bonding (MeSH)</term>
<term>Magnetic Resonance Spectroscopy (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Pandemics (prevention & control)</term>
<term>Pneumonia, Viral (prevention & control)</term>
<term>Pneumonia, Viral (virology)</term>
<term>Point Mutation (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Structural Homology, Protein (MeSH)</term>
<term>Vaccines, Attenuated (MeSH)</term>
<term>Vaccines, Inactivated (MeSH)</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (genetics)</term>
<term>Viral Envelope Proteins (immunology)</term>
<term>Viral Vaccines (MeSH)</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Betacoronavirus (composition chimique)</term>
<term>Betacoronavirus (isolement et purification)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Eau (composition chimique)</term>
<term>Humains (MeSH)</term>
<term>Hydrogène (MeSH)</term>
<term>Infections à coronavirus (prévention et contrôle)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Liaison hydrogène (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Mutation ponctuelle (MeSH)</term>
<term>Pandémies (prévention et contrôle)</term>
<term>Pneumopathie virale (prévention et contrôle)</term>
<term>Pneumopathie virale (virologie)</term>
<term>Protéines de l'enveloppe virale (composition chimique)</term>
<term>Protéines de l'enveloppe virale (génétique)</term>
<term>Protéines de l'enveloppe virale (immunologie)</term>
<term>Similitude structurale de protéines (MeSH)</term>
<term>Simulation numérique (MeSH)</term>
<term>Spectroscopie par résonance magnétique (MeSH)</term>
<term>Vaccins antiviraux (MeSH)</term>
<term>Vaccins atténués (MeSH)</term>
<term>Vaccins inactivés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Viral Envelope Proteins</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Hydrogen</term>
<term>Vaccines, Attenuated</term>
<term>Vaccines, Inactivated</term>
<term>Viral Vaccines</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Betacoronavirus</term>
<term>Eau</term>
<term>Protéines de l'enveloppe virale</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines de l'enveloppe virale</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Protéines de l'enveloppe virale</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pandemics</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pandémies</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Humans</term>
<term>Hydrogen Bonding</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Models, Molecular</term>
<term>Point Mutation</term>
<term>Protein Conformation</term>
<term>Structural Homology, Protein</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Humains</term>
<term>Hydrogène</term>
<term>Liaison hydrogène</term>
<term>Modèles moléculaires</term>
<term>Mutation ponctuelle</term>
<term>Similitude structurale de protéines</term>
<term>Simulation numérique</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Vaccins antiviraux</term>
<term>Vaccins atténués</term>
<term>Vaccins inactivés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The outbreak of COVID-19 across the world has posed unprecedented and global challenges on multiple fronts. Most of the vaccine and drug development has focused on the spike proteins and viral RNA-polymerases and main protease for viral replication. Using the bioinformatics and structural modelling approach, we modelled the structure of the envelope (E)-protein of novel SARS-CoV-2. The E-protein of this virus shares sequence similarity with that of SARS- CoV-1, and is highly conserved in the N-terminus regions. Incidentally, compared to spike proteins, E proteins demonstrate lower disparity and mutability among the isolated sequences. Using homology modelling, we found that the most favorable structure could function as a gated ion channel conducting H+ ions. Combining pocket estimation and docking with water, we determined that GLU 8 and ASN 15 in the N-terminal region were in close proximity to form H-bonds which was further validated by insertion of the E protein in an ERGIC-mimic membrane. Additionally, two distinct "core" structures were visible, the hydrophobic core and the central core, which may regulate the opening/closing of the channel. We propose this as a mechanism of viral ion channeling activity which plays a critical role in viral infection and pathogenesis. In addition, it provides a structural basis and additional avenues for vaccine development and generating therapeutic interventions against the virus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32785274</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural insight into the role of novel SARS-CoV-2 E protein: A potential target for vaccine development and other therapeutic strategies.</ArticleTitle>
<Pagination>
<MedlinePgn>e0237300</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0237300</ELocationID>
<Abstract>
<AbstractText>The outbreak of COVID-19 across the world has posed unprecedented and global challenges on multiple fronts. Most of the vaccine and drug development has focused on the spike proteins and viral RNA-polymerases and main protease for viral replication. Using the bioinformatics and structural modelling approach, we modelled the structure of the envelope (E)-protein of novel SARS-CoV-2. The E-protein of this virus shares sequence similarity with that of SARS- CoV-1, and is highly conserved in the N-terminus regions. Incidentally, compared to spike proteins, E proteins demonstrate lower disparity and mutability among the isolated sequences. Using homology modelling, we found that the most favorable structure could function as a gated ion channel conducting H+ ions. Combining pocket estimation and docking with water, we determined that GLU 8 and ASN 15 in the N-terminal region were in close proximity to form H-bonds which was further validated by insertion of the E protein in an ERGIC-mimic membrane. Additionally, two distinct "core" structures were visible, the hydrophobic core and the central core, which may regulate the opening/closing of the channel. We propose this as a mechanism of viral ion channeling activity which plays a critical role in viral infection and pathogenesis. In addition, it provides a structural basis and additional avenues for vaccine development and generating therapeutic interventions against the virus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sarkar</LastName>
<ForeName>Manish</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Bose Institute, Kolkata, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Saha</LastName>
<ForeName>Soham</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0003-1173-1397</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory for Perception and Memory, Institut Pasteur, Paris, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR-3571), Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000669933">COVID-19 vaccine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014613">Vaccines, Attenuated</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015164">Vaccines, Inactivated</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014765">Viral Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000705509">envelope protein, SARS-CoV-2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7YNJ3PO35Z</RegistryNumber>
<NameOfSubstance UI="D006859">Hydrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C000657245">COVID-19</SupplMeshName>
<SupplMeshName Type="Organism" UI="C000656484">severe acute respiratory syndrome coronavirus 2</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006859" MajorTopicYN="N">Hydrogen</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006860" MajorTopicYN="N">Hydrogen Bonding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017354" MajorTopicYN="N">Point Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040681" MajorTopicYN="N">Structural Homology, Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014613" MajorTopicYN="N">Vaccines, Attenuated</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015164" MajorTopicYN="N">Vaccines, Inactivated</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014765" MajorTopicYN="N">Viral Vaccines</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32785274</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0237300</ArticleId>
<ArticleId IdType="pii">PONE-D-20-16258</ArticleId>
<ArticleId IdType="pmc">PMC7423102</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17452350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W270-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21624888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2009 Jul 30;30(10):1545-614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19444816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2010 Jan 30;31(2):455-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19499576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15075-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20689043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Jul;5(7):e1000511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19593379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 8;44(1):95-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26673695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2020 Apr 1;37(4):1237-1239</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31904846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Jul;158(3):1321-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11454778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Jul;583(7816):459-468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32353859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2010 Mar 30;399(1):120-128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20110095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2018 Jan;27(1):293-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29067766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2016 Oct 1;32(19):2936-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27318206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Oct 29;11(10):e1005215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26513244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 May 2;289(18):12535-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24668816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 May 01;10(5):e1004077</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24788150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Sep 12;2(9):e880</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17849009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2013 Sep 10;4(5):e00650-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24023385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2004 Oct;25(13):1605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15264254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Biomembr. 2018 Jun;1860(6):1309-1317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29474890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Jul 02;10(8):563-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22751485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2019 May 27;16(1):69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31133031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(12):6551-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23576515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Jun;85(12):5794-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21450821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Apr 30;382(18):1677-1679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32109012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jan;88(2):913-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24198408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(4):1701-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2006 Aug 1;91(3):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2007 Sep;16(9):2065-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17766393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2011 Jul 5;415(2):69-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21524776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3381-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Nov;76(22):11518-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12388713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2016 Jun;24(6):490-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27012512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2018 Jan;27(1):135-145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28884485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jul 2;46(W1):W363-W367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29860391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W294-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22649060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Sep;1828(9):2026-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23688394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Oct;7(10):e1002315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22028656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2008 Sep 15;95(6):L39-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18658207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Dec 5;330(1):322-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15527857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29788355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2011 Jul 30;32(10):2149-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21541955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 Jul 5;376(2):379-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18452964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 May;74(9):4319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10756047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Aug;82(15):7721-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18463152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2012 Oct 25;432(2):485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22832120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2014 Oct 15;35(27):1997-2004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25130509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Apr;77(8):4597-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12663766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2015 Apr;478:75-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25726972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Mar;579(7798):265-269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32015508</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
<li>Inde</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
</settlement>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Sarkar, Manish" sort="Sarkar, Manish" uniqKey="Sarkar M" first="Manish" last="Sarkar">Manish Sarkar</name>
</noRegion>
</country>
<country name="France">
<region name="Île-de-France">
<name sortKey="Saha, Soham" sort="Saha, Soham" uniqKey="Saha S" first="Soham" last="Saha">Soham Saha</name>
</region>
<name sortKey="Saha, Soham" sort="Saha, Soham" uniqKey="Saha S" first="Soham" last="Saha">Soham Saha</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidFranceV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000562 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000562 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidFranceV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32785274
   |texte=   Structural insight into the role of novel SARS-CoV-2 E protein: A potential target for vaccine development and other therapeutic strategies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32785274" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidFranceV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Oct 6 23:31:36 2020. Site generation: Fri Feb 12 22:48:37 2021